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Introduction

Independently of the approach chosen to price options, as with any pricing problem,
option prices are completely determined by the distribution of the value of the under-
lying asset at expiration and the shape of the asset specific pricing kernel (ASPK).1

Mathematically, the pricing kernel characterizes the change from the subjective prob-
ability measureP to the risk-neutral (or equivalent martingale) measureQ. It is also
known as the Radon-Nikodym derivative ofQ with respect toP. In the case of
Black and Scholes (1973) it is assumed that the underlying asset is governed by a
geometric Brownian motion and that continuous and frictionless trading is possible.
For the Black and Scholes model, both the distribution at expiration and the ASPK
are uniquely determined by the geometric Brownian motion. Rubinstein (1976) and
Brennan (1979) make explicit assumptions on the distribution and the ASPK. More
precisely, they assume a representative investor and thus the representative investor’s
utility function characterizes the ASPK. Câmara (2003) and Schroder (2004) recently
extended their approach to alternative distributions and utility functions. However,
Câmara (2003) and Schroder (2004) also focus on preferences and distributions
which yield risk neutral valuation relationships, i.e. option pricing formulas without
any preference parameter.

In contrast to these models, in this paper we do not restrict our analysis to such
risk neutral valuation relationships. The focus of this paper is to derive analytical
option pricing formulas which impose as little as possible restrictions on the shape
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of the ASPK and the distribution of the underlying asset. The option pricing formulas
are based on a generalized polynomial characterization of the ASPK. Based on this
general characterization of ASPKs, we derive analytical option pricing formulas for
lognormally, log-gamma, uniformly and normally distributed underlyings. We also
demonstrate how the approach works in general and we point out that our approach
works with many alternative distributions. Although analytical option pricing formu-
las exist for these distributions, our approach is based on much weaker assumptions
on the ASPK. For example, Heston (1993) derives an analytical option pricing for-
mula for a European option on a log-gamma distributed underlying if the ASPK has
constant elasticity. We derive an analytical option pricing formula on a log-gamma
distributed underlying for any ASPK that can be characterized by a generalized
polynomial.

While for many underlyings as, for example, stocks and stock market indices the
lognormal or the log-gamma distribution might be considered as good approxima-
tions there is no reason to assume that the ASPK should be characterized by constant
elasticity as in the Black-Scholes or the Heston models. Even if constant relative risk
aversion might be a good model for the representative investor and thus the market
pricing kernel has constant elasticity, this does not imply that the ASPK should have
constant elasticity with respect to the underlying.2 Indeed, recent empirical studies
by Ait-Sahalia and Lo (2000), Jackwerth (2000) and Rosenberg and Engle (2002)
suggest that even the market pricing kernel is not of the constant elasticity type.
Several papers have analyzed the impact of non-constant elasticity of the ASPK on
option prices (see for example Benninga and Mayshar, 2000, and Franke, Stapleton
and Subrahmanyam, 1999)3. However, they did not provide an analytical option
pricing formula. Thus, our analytical option pricing model is a valuable extension
of the existing option pricing literature. Its main advantages are:

First, the enhanced flexibility allows for more accurate analytical option pric-
ing formulas. For example, our generalized Heston-model which is based on the
log-gamma distribution seems to be a promising approach for pricing options on a
broad-based stock index as the S&P 500. The log-gamma distribution is relatively
flexible and allows to fit reasonable levels of kurtosis and skewness and the gener-
alized polynomial characterization of the ASPK is flexible enough to fit empirical
ASPKs as will be shown.

Second, our approach provides a convenient way to analyze the quantitative im-
plications of non-constant elasticity of the ASPK on option prices.

Third, the flexibility in terms of the distribution as well as in terms of the ASPK
provides also a new tool to infer ASPKs from option data. Compared to existing para-
metric methods (see, for example, Bartunek and Chowdhury, 1997), our approach has
the advantage of enhanced flexibility while still yielding a parametric estimate of the
ASPK.

Fourth, our approach does not rely on complete markets. Since only the expected
terminal distribution of the underlying needs to be known it presents an interesting
model to price options when the underlying is not traded as, for example, with
real options. We discuss the applicability of our formulas to real options and em-
ployee stock options as well as the economic intuition behind using a polynomial
approximation of the ASPK in both cases.
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This paper is closely related to the companion paper Lüders and Franke (2004).
The polynomial characterization of the ASPK was originally proposed by Lüders and
Franke (2004) to derive analytical time-series models for the market portfolio. While
Lüders and Franke analyze the time-series characteristics of the market portfolio, this
paper focuses on option prices. Also, Lüders and Franke (2004) is an analysis in con-
tinuous time. This paper also extends Lüders and Franke (2004) since they consider
only the lognormal case. Moreover, we analyze in greater detail the characteristics
of the new ASPK class and we show that the polynomial characterization can be
used to infer empirical ASPK. Finally, in this paper empirical ASPKs estimated in
Jackwerth (2000) are fitted.

The paper is organized as follows. Section 1 presents the market model and the
class of generalized ASPKs which allows for very general shapes of the ASPK to be
matched. The characteristics of the polynomial ASPKs are also analyzed. In Section
2 the general approach to value options with generalized polynomial approximations
of the ASPK is shown. Based on this class of ASPKs, we derive an analytical pricing
formula for European options, when the final distribution at timeT is lognormal and
the option matures at timeT . In order to price options which mature at timeτ < T
and to characterize the influence of the ASPK on the price and the implied volatili-
ties, we derive a generalized Black-Scholes partial differential equation for the option
price in Section 2.2.2. We solve this equation numerically for a specific version of
the general ASPK proposed above using a standard finite difference scheme. We
then turn to the cases when the underlying is log-gamma, uniformly and normally
distributed and derive analytical option pricing formulas for these cases. We compare
the different models in terms of implied volatilities. The paper is completed by a short
conclusion.

1. The model

Throughout this paper we consider a market with a given time horizonT > 0. The
different examples in this paper will differ with respect to the information structure,
i.e. the filtrations will vary. We assume that the asset does not pay any dividends until
terminal dateT . The fundamental asset pricing equation states that in an arbitrage
free market the price of an asset is given by the expected future value of the asset,
where the expectation is taken under some equivalent martingale measureQ. To
simplify the presentation in this paper we always assume the risk-free rate to be
zero.4 The equivalent martingale measureQ is defined by

Q(A) =

∫
A

φt,T d P, ∀A ∈ FT ,

with the physical measureP and the asset specific pricing kernelφt,T . Given the
risk-free rate is zero and given the equivalent martingale measure is defined by the
ASPKφt,T , the asset priceFt for 0 ≤ t ≤ T can be written as5

Ft = EQ(IT ) = E
(

ITφt,T
∣∣Ft

)
,
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whereIT is the value of an information process at the terminal dateT and the filtra-
tion Ft characterizes the information available at time 0≤ t ≤ T . The information
process is exogenously given and defined as the conditional expectation of the ter-
minal value of the underlying asset. Due to the definition of the information process
I t , the valueIT is equal to the terminal timeT value of the underlying. This may be
either some liquidation value at timeT or simply the asset price of the underlying at
time T .6 It follows that the price of a European call option with strike priceK and
expiration dateT is given by

Ct = E
(
max(IT − K , 0) φt,T

∣∣Ft
)
, 0 ≤ t ≤ T.

Throughout this paper, we will assume that the distribution ofIT and the filtration
(Ft )t∈[0,T ] are exogenously given. Our emphasis is to analyze the impact of the
ASPK on European option prices. In order to get analytical option pricing formulas
we follow Lüders and Franke (2004) who characterize the ASPK by a generalized
polynomial. In the following subsections we present the polynomial characterization
and discuss its properties. Analytical formulas for European option prices are then
derived for alternative distributional assumptions of the underlying asset.

1.1. A general characterization of asset specific pricing kernels

Lüders and Franke (2004) suggest to characterize the ASPK by a generalized poly-
nomial, i.e.

φt,T =

∑N
i =1 αi I δi

T

E
(∑N

i =1 αi I δi
T

∣∣∣Ft

) , 0 ≤ t ≤ T, (1)

with αi , δi ∈ R, N ∈ N ∪ {∞}. To generate arbitrage-free asset prices the only
restriction which has to be imposed on the parameters is that 0< φt,T < ∞, P-
a.s. This specification is rather general so that many different characteristics of the
ASPK can be matched. Obviously the power function is a special case withN = 1
in equation (1). Since the ASPK based on the exponential function can be rewritten
as

φ
exponential
t,T =

∑
∞

k=0
1
k! (−aIT )k

E
(∑

∞

k=0
1
k! (−aIT )k

∣∣∣Ft

) , 0 ≤ t ≤ T,

it follows that∑
∞

i =1 α̂i exp(̂δi IT ) =
∑

∞

i =1 α̂i
∑

∞

k=0
1
k! (̂δi IT )k

=
∑

∞

k=0

[∑
∞

i =1
α̂i
k! (̂δi )

k
]
(IT )k

under suitable conditions on̂δi , α̂i . This proves that a sum of exponential func-
tions is also a special case of the proposed polynomial. Furthermore, Lüders and
Franke (2004) show that the generalized polynomial characterization approximates
any ASPK at least as well as a Taylor expansion of the same order. This follows since
a Taylor-series approximation of a functionf (x) aboutx0 can be written as∑N

i =0
f (i )(x0)

i ! (x − x0)
i
=

∑N
i =0

f (i )(x0)
i !

(∑i
k=0

(i
k

)
xi −k(−x0)

k
)

(2)
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where f (i ) is the i th derivative of f . Hence a Taylor-series approximation of order
N is a special case of the generalized polynomial of orderN.7

As will be shown later the flexibility of the ASPK is of great importance for
option pricing but also for empirical investigations of option markets since recent
empirical literature points to very complicated functional forms of empirical ASPKs.
The main advantage of this new class of ASPKs, besides the fact that very flexible
shapes of the asset specific pricing kernel can be well approximated, is that these
ASPKs are characterized by a series of non-central moments of the random variable.
Hence, for many distributions of the underlying asset, the ASPK and asset prices are
easily computed. For example, Lüders and Franke (2004) show that the priceFt at
time t of a lognormally distributed cash-flowIT at timeT is given by

Ft = E(ITφt,T |Ft ), 0 ≤ t ≤ T,

which can be rewritten as

Ft = E

(
IT

∑N
i =1 αi I δi

T

E(
∑N

i =1 αi I δi
T |Ft )

∣∣∣∣Ft

)
, 0 ≤ t ≤ T.

Thus, the price can be characterized by a sum of non-central moments.
In addition to these two more technical reasons for using a generalized polyno-

mial ASPK there are also economic arguments which make the generalized polyno-
mial ASPKs very interesting candidates for pricing options. The generalized poly-
nomial ASPKs are straightforward to interpret and consistent with economic theory.

Therefore, consider first the case of a real option.N owners of a company have
to decide whether or not to undertake a risky project. All owners have a similar
payment schedule, they receive a proportion of the project’s cash flow or final value,
respectively. Hence, they all have a linear sharing rule with respect to this project. It
is difficult to estimate risk preferences. Therefore it might be reasonable to assume
that all owners of the company have utility functions with respect to the project under
consideration that are characterized by a power function, i.e. CRRA or alternatively
an exponential function, i.e. CARA. In this case only one parameter has to be esti-
mated per owner. If, for example, every owner’s project specific utility function is
approximated by a power function, then the weighted objective function (the repre-
sentative owner’s utility function) would be

∑N
i =1 Ui (αi IT ) =

∑N
i =1 (αi IT )δi . This

leads to the proposed ASPK. For similar arguments we may use our approach also
to price employee stock options which are often not traded.

Consider next the interesting characteristic of the polynomial ASPK that the elas-
ticity is bounded from above and from below. This property of the ASPK follows also
from models with heterogeneous agents (see for example Benninga and Mayshar,
2000). The analysis of the market portfolio in Benninga and Mayshar (2000) shows
that in an economy with heterogeneous agents the representative agent’s risk aversion
is bounded from above and from below by the risk aversion of the most and the least
risk averse investor. In a very simple economy the pricing kernel and the ASPK are
the same and therefore the representative investor’s risk aversion equals the elasticity
of the ASPK.
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In the following subsection we further elaborate the technical characteristics of
the polynomial specification and we compare them to alternative approaches. These
characteristics are especially important when it comes to applying our approach.

1.2. Technical properties of the pricing kernel class

The polynomial specification is a very flexible characterization which allows to
approximate very general shapes of the true ASPK. As already mentioned, the speci-
fication can be interpreted as a generalized Taylor expansion. Therefore, very general
forms of the ASPK can be approximated and the accuracy of this approximation is
depending on the smoothness of the ASPK. Mathematically, the approximation error
usingn − 1 terms is bounded by max|φ(n)

t,T |/n!, whereφ
(n)
t,T is then-th derivative of

the ASPK. Hence, one obtains a useful approximation for sufficiently largen, if the
derivatives stay bounded.

Different parametric characterizations of the ASPK can be found in the litera-
ture. To back out empirical ASPKs from option prices Bartunek and Chowdhury
(1997) assume a power utility function and an equity process with constant mean
and volatility. This choice is very restrictive. Bliss and Panigirtzoglou (2004) also
assume a restrictive form of the representative investor’s utility function, either power
or exponential utility, which both are special cases of specification (1). To infer risk-
neutral probability density functions they use a smoothed weighted natural spline
least-squares approximation of implied volatilities. This approach allows for non-
stationary subjective probability density functions, but due to the restrictive form of
the utility function their approach excludes by definition anomalies of the ASPK’s
form, e.g. non-monotonicity as observed by Jackwerth (2000).

Bliss and Panigirtzoglou (2004) find empirically that risk aversion implied by
option data declines with the forecast horizon which implies that the ASPK is time-
dependent. Note that characterization (1) can also be further generalized to allow for
more flexibility in time by allowing the coefficients to be functions of time rather
than being constant, without affecting the main results of this paper. We just note
this possibility and do not pursue this any further here but leave it for future work.

Rosenberg and Engle (2002) propose two specifications of the ASPK. The first is
a power function as in Bartunek and Chowdhury (1997) and Bliss and Panigirtzoglou
(2004). The results in Rosenberg and Engle (2002) show that the specification as a
simple power function restricts the form of the ASPK significantly.

In contrast, the more general specification (1) is more flexible and allows to ap-
proximate very general shapes of the true ASPK. As an example, we consider the
ASPKs given in Jackwerth (2000)8. These are non-parametric estimates of ASPKs
implied by S&P 500 options. From (1) we can compute the related elasticity,

η = −
∂φt,T

∂ IT

IT

φt,T
= −

∑
αi δi I δi −1

T IT∑
αi I δi

T

. (3)

In order to fit the elasticity (3) of our specification to the empirical elasticities of
Jackwerth (2000), we need to determine the coefficientsαi , δi , such thatη ≈ ηemp,
with M given empirical elasticitiesηemp = (ηemp,k)k, (k = 1, . . . , M), for different
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wealth. We use a nonlinear least squares approach, in particular a sub-space trust-
region method (Coleman and Li, 1996), to minimize

min
αi ,δi

∑
k

(ηk − ηemp,k)
2.

Figure 1 shows a typical result. In this computation, we used specification (1)
with N = 5, i.e. a sum of five terms. The resulting ASPK exhibits a non-monotonic
behavior.9
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Figure 1. Fitting of empirical ASPKs. The right graph shows empirical elasticities of an ASPK implied
by S&P 500 options (marked by crosses) and the fitted five-term polynomial specification (solid line), i.e.
specification (4) with N=5. The ASPKs are published in Jackwerth (2000). The elasticity of the ASPK is
u-shaped and reaches negative values as is typical for APSKs implied by S&P 500 options after the 1987
crash. The left graph is the ASPK that corresponds to the fitted elasticities. This ASPK is hump-shaped.
While the left part of the elasticities is well fitted the fit for the right part is less satisfactory. However,
the figure illustrates that even with only five terms the polynomial approximation can fit non-monotonic
ASPKs reasonably well. The approximation error can be reduced by increasing the number of terms in
the polynomial approximation.

The second specification proposed in Rosenberg and Engle (2002) is a weighted
sum of orthogonal Chebyshev polynomials. This kind of orthogonal expansion has
the advantage that it provides a comparably precise approximation with a low number
of terms. The elements of specification (1) have no orthogonal property and hence
may involve more terms. However, specification (1) has an advantage, which be-
comes very important if the goal is to obtain explicit formulas: It uses only powers
of IT . This allows for the derivation of explicit option pricing formulas, since only
non-central moments ofIT have to be computed. For this purpose, explicit formulas
exist for many approved underlying distributions.
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A different approach is conducted by Jackwerth (2000), Ait-Sahalia and Lo (2000),
and others. They use non-parametric approaches to infer the ASPK from empirical
data. Jackwerth (2000) assumes a time-constant subjective probability density func-
tion (PDF) and compares time-series of subjective PDF to time-series of risk-neutral
PDFs derived from S&P 500 data to obtain the ASPK. Non-parametric approaches
do not restrict the form of the ASPK and can provide interesting results on the ASPKs
behavior.

A parametric estimate of the true ASPK, however, has the advantage that it is
possible to enforce certain characteristics of the ASPK by restricting the parameter
set. For example, to ensure monotonicity and positivity of (1) we have the following
sufficient conditions

− Monotonicity:δi ≤ 0,

− Positivity:αi > 0.

Further restrictions on the ASPK are easily imposed. To illustrate this we discuss
now the restrictions suggested by Snow (1991). Snow (1991) proposes to study the
qth moments of the ASPK

‖φt,T‖q := E[φq
t,T ]1/q, 1 < q < ∞.

As an example, we consider in the following the important caseq = 2 for a special
representative of (1), the two-term ASPK defined by

φt,T =

1
IT

+ β I δ
T

E[ 1
IT

+ β I δ
T |Ft ]

, 0 ≤ t ≤ T, (4)

with β ≥ 0, δ ≤ −1. Note that using this special characterization of the ASPK yields
an ASPK which is very close to the standard one with constant elasticity. However,
this ASPK has declining elasticity. Figure 2 shows a contour plot of‖φt,T‖2 as a
function of β and δ. Using this information it is simple to restrict the parameter
set used for specification (1) in a way to meet with certain bounds for‖φt,T‖2. For
example, if we use ASPK (4) to fit empirical data and restrict the parameter set for
β, δ to the area above the dash-dotted line in Figure 2, we obtain an ASPK that
fulfills the a-priori bound‖φt,T‖2 < 1.2.

This is particularly useful for approximation at the boundaries where no or only
few data are available, and interpolation or extrapolation of these data, for exam-
ple by splines, becomes problematic. Rosenberg and Engle (2002) perform their
approximation in a moneyness region of±10% and set the ASPK outside of this
domain constant to its value at−10% and 10%, respectively. This seems unsatis-
factory when compared to the monotonic behavior of ASPKs that stem from classic
theory. In contrast, specification (1) allows for a monotonic behavior at the boundary
(cf. Figure 1) and with restrictions imposed on the parameters as mentioned above
it as well ensures certain properties of the ASPK. Thus, specification (1) provides a
consistent approach to approximate the true ASPK also at the boarders, where only
few data are available. Therefore, the polynomial ASPK characterization appears to
be an appropriate approach also to alleviate the problem addressed, for example, in
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Figure 2. Contour plot of||8t,T ||2. The figure shows the contour plot of||8t,T ||2 for the two-term
ASPK (4). It illustrates the combinations ofβ andδ that satisfy certain bounds on||8t,T ||2. For example,
parameter combinations above the dash dotted line satisfy||8t,T ||2 < 1.2. With such restrictions it is
possible to ensure that empirical estimates of ASPKs are not too erratic.

Constantinides, Jackwerth and Perrakis (2004), that reasonable ASPKs should not
be too erratic.

Finally, the numeric effort is rather small, because of the little number of param-
eters that need to be determined. For example, in the case of the empirical Jackwerth
(2000) ASPK, a sum of five terms suffices for a useful approximation and thus only
ten parameters need to be determined. A cubic spline interpolation of the same data
set involves more than 30 parameters.

Since our method is flexible in terms of the distribution as well as in terms of the
ASPK it provides a new tool to infer ASPK from option data. To do this one would
estimate the underlying distribution from past returns and then fit the option pricing
formula to the observable option data. This would result in an analytical estimate of
the ASPK.

In summary, although non-parametric approaches assure a great freedom for the
form of the ASPK and new insight into the interplay of subjective and risk-neutral
probability densities and the ASPK, they do not appear to be a suitable tool to
derive option pricing formulas. Among the parametric approaches the orthogonal
polynomial approach of Rosenberg and Engle (2002) as well as specification (1)
are flexible enough to approximate general shapes of the true ASPK and are able
to capture phenomena like non-monotonicity (increasing ASPK). In the context of
option pricing, specification (1) seems commendable, since it admits the derivation
of explicit pricing formulas.
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2. Option Pricing

2.1. The general case

Our pricing methodology works in general as follows. In an arbitrage–free market
the value of a European call (with expiration dateT) at timet ≤ T is given by

Ct = E
(
max(IT − K , 0) φt,T

∣∣Ft
)
.

Assume that the asset specific pricing kernel is characterized by equation (1) and
defineµ(t, δi ) = E

(
I δi
T

∣∣Ft
)
. This yields

Ct = E

(
max

( ∑N
i =1 αi I δi +1

T∑N
i =1 αi µ(t, δi )

− K

∑N
i =1 αi I δi

T∑N
i =1 αi µ(t, δi )

, 0

)∣∣∣∣Ft

)
(5)

=

∫
K

∑N
i =1 αi I δi +1

T∑N
i =1 αi µ(t, δi )

f (IT , t) d IT − K
∫
K

∑N
i =1 αi I δi

T∑N
i =1 αi µ(t, δi )

f (IT , t) d IT

=

∑N
i =1

(
αi

∫
K I δi +1

T f (IT , t) d IT
)∑N

i =1 αi µ(t, δi )
− K

∑N
i =1

(
αi

∫
K I δi

T f (IT , t) d IT
)∑N

i =1 αi µ(t, δi )
,

where f (IT , t) is the conditional density function ofIT . For the underlying asset
this equation further simplifies to

Ft = E

( ∑N
i =1 αi I δi +1

T∑N
i =1 αi µ(t, δi )

∣∣∣∣Ft

)
=

∑N
i =1 αi µ(t, δi + 1)∑N

i =1 αi µ(t, δi )
. (6)

Equations (5) and (6) show that calculating prices under the assumption that the
ASPK is characterized by a generalized polynomial basically reduces the pricing
problem to calculating non-centralized moments. As we demonstrate by the follow-
ing examples, for many distributions analytical solutions exist to these integrals and
therefore analytical option prices can be calculated.

2.2. Lognormality

We consider a market with a given time horizonT > 0 and a one-dimensional
standard Brownian motionW on a given filtered probability space(�,F,Ft , P)
where(Ft )t∈[0,T ] is the filtration generated byW augmented by all theF-null sets,
with F = FT . As in Franke, Stapleton and Subrahmanyam (1999) we assume that
the information process – which can be interpreted as the representative investor’s
conditional expectation about the terminal value of the stock – is governed by a
standard geometric Brownian motion without drift. Thus, we assume that the value
of the underlying asset at expiration is given byIT which is characterized by

d It = σ I t dWt , 0 ≤ t ≤ T,

I0 > 0,
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with constantσ . Hence, in this special case the terminal valueIT is lognormally
distributed, as in the Black-Scholes model, with

E(IT |Ft ) = I t and Var(ln IT |Ft ) = σ 2(T − t), 0 ≤ t ≤ T.

2.2.1. An analytical formula
In this section we consider the price of a European option with strike priceK that
expires at timeT . The only assumption on the underlying asset is that its value at time
T is lognormally distributed. From equation (5) and the fact thatIT is lognormally
distributed it follows by rearranging terms that option prices in this ASPK class can
be understood as a weighted sum of Black-Scholes prices,

Ct =

N∑
i =1

E
(
αi I δi

T

∣∣∣Ft

)
E

(∑N
i =1 αi I δi

T

∣∣∣Ft

)
︸ ︷︷ ︸

weightening factor

E
(

max(IT − K , 0) αi I δi
T

∣∣∣Ft

)
E

(
αi I δi

T

∣∣∣Ft

)
︸ ︷︷ ︸

Black-Scholes price for the virtual asset priceF (i )
t

(7)

=

N∑
i =1

E
(
αi I δi

T

∣∣∣Ft

)
E

(∑N
i =1 αi I δi

T

∣∣∣Ft

)BS(t, F (i )
t , K , σ ), 0 ≤ t ≤ T.

where

BS(t, F (i )
t , K , σ ) = F (i )

t N(d1) − K N(d2),

d1 =
ln F (i )

t
K +

1
2σ 2(T − t)

σ
√

T − t
, d2 = d1 − σ

√
T − t,

is the Black-Scholes formula for an asset priceF (i )
t . We call this a virtual asset price

sinceF (i )
t is the price that would hold if the elasticity of the ASPK wereδi . This

virtual asset priceF (i )
t is given by

F (i )
t =

E
(

ITαi I δi
T

∣∣∣Ft

)
E

(
αi I δi

T

∣∣∣Ft

) =

E
(

I δi +1
T

∣∣∣Ft

)
E

(
I δi
T

∣∣∣Ft

) , 0 ≤ t ≤ T,

and sinceIT is lognormally distributed the conditional expectation ofI δi
T is given by

E(I δi
T |Ft ) = exp

[1
2δ2

i σ 2(T − t) + δi E( ln IT |Ft )
]
.

This yields
F (i )

t = I t exp
[
δi σ

2(T − t)
]
, 0 ≤ t ≤ T.

To get a better understanding of equation (7) recall that in the Black-Scholes case the
ASPK is given by a power function. IfN = 1 then the first term in equation (7) is 1
and the option price is given by the classical Black-Scholes equation. IfN > 1 then
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the option price is the weighted sum of Black-Scholes prices, where every Black-
Scholes price BS(t, F (i )

t , K , σ ) corresponds to an economy with constant elasticity
δi . The price of the underlying asset under the generalized ASPK is given by the
weighted sum

Ft =

N∑
i =1

E
(
αi I δi

T

∣∣∣Ft

)
E

(∑N
i =1 αi I δi

T

∣∣∣Ft

)
︸ ︷︷ ︸

weightening factor

F (i )
t , 0 ≤ t ≤ T. (8)

The proposed class of ASPKs and a lognormally distributed terminal value therefore
yield an analytical solution for European options which is given by a weighted sum
of Black-Scholes prices. Note that this option pricing formula is written in terms
of the expected valueI t of the underlying. This can be sometimes more convenient,
when no market price for the underlying is available but the investor has some knowl-
edge about the expected future payoff of the underlying. Moreover, an option pricing
formula which depends explicitly on investors’ expectations and on the parameters
of the ASPK is a valuable tool to study the impact of expectations and preferences
on option prices. In the case that asset prices are available, the observable price of
the underlying is given by (8).

2.2.2. A generalized Black-Scholes partial differential equation
Let us now consider a European option that expires at timeτ with τ < T . Again,
the only assumption on the underlying asset is that its value at timeT is lognormally
distributed. In order to analyze the relationship between the underlying asset price
and the option price as well as the impact on the implied volatility, it is convenient to
consider the partial differential equation which characterizes the option price, since
the analytical formulas of section 2.2.1 are not applicable. We have

Ct = EQ (max(Fτ − K , 0)|Ft ) , 0 ≤ t ≤ τ,

where EQ is the expected value with respect to the equivalent martingale measureQ.
Further, in the Gaussian framework with continuous information diffusion the option
price is a deterministic functionC = C(F, t) of the asset priceF and timet . Hence,
the option price is characterized by the following partial differential equation10

∂C(F, t)

∂t
+

1

2
(6(F, t))2F2∂2C(F, t)

∂F2
= 0, F > 0, 0 ≤ t ≤ τ, (9)

where6(F, t) is the asset price process’ volatility, with the final condition

C(F, τ ) = max(F − K , 0) , F > 0. (10)

Inserting our new class of ASPKs yields

6(F, t) =
σ I ∂

∂ I F(I , t)

F
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Figure 3. Forward prices under different ASPKs. The figure shows the forward priceF as a function of
the information processI (left graph) and the forward priceF as a function of the information processI
and timet (right graph). For both graphs we set terminal dateT = 3 and the instantaneous volatility of
the information processσ = 0.2. For the left graph we setβ = 5 with δ = −3, −5, or − 10. We also
include the case withβ = 0, i.e. constant elasticity of the ASPK. For the right graphδ = −10,β = 5 and
time t varies between 0 and 3.

with

F(I , t) = I

∑N
i =1 αi I δi Ai (t) exp

(
σ 2(T − t)δi

)∑N
i =1 αi I δi Ai (t)

,

with Ai (t) = exp(1
2δi (δi − 1)σ 2(T − t)). A simple computation shows that (9) re-

duces to the standard Black-Scholes equation, in the case of the geometric Brownian
motion with F(I , t) = I exp(δi σ

2(T − t)).
To illustrate the influence of the ASPK on the price of a European call option we

consider now (4) as a simple example of our general characterization of the ASPK.
Again, let

φt,T =

1
IT

+ β I δ
T

E[ 1
IT

+ β I δ
T |Ft ]

, 0 ≤ t ≤ T,

with β ≥ 0, δ ≤ −1. The forward priceF = F(I , t) is given by

F(I , t) = I exp(σ 2(t − T))
1 + β I δ+1 exp((δ2

+ δ)σ 2(T − t)/2)

1 + β I δ+1 exp((δ2 − δ − 2)σ 2(T − t)/2)
. (11)

For β = 0 we recover the case of a geometric Brownian motion withF(I , t) =

I exp(σ 2(t − T)). The same holds forδ = −1. Both β = 0 andδ = −1 imply
constant elasticity of the ASPK. Hence, for those cases we are in the classical Black–
Scholes framework.

Figure 3 showsF(I , t = 0) for T = 3, β = 5, δ = −3, −5, −10 compared to
the ASPK with constant elasticity (β = 0) as well asF(I , t) for T = 3, β = 5, δ =

−10. The major deviation between ASPK (4) and the one with constant elasticity is
for low levels ofI and for timest far from maturity. Clearly, ast → T , F(I , t) → I ,
which coincides with the fact thatFT = IT .

Equation (9) involves three variablesI , F andt , since6(F, t) depends explicitly
on I . To removeI from the equation we would need to resolve equation (11) forI . In
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general, it is not clear how to achieve this because of the complex structure of (11).
Therefore it is convenient to rewrite (9) in terms of the option priceC = C(I , t) as a
function of I andt . To perform this transformation we need the following Lemma.

LEMMA 1. Let σ ≥ 0, β > 0 andδ ≤ −1. Then the forward price F: (0, ∞) ×

(0, ∞) → R, (I , t) 7→ F(I , t), given by(11), is strictly monotone in I and t.

The proof is given in the Appendix.
Hence, the inverseF−1(·, t), (F, t) 7→ F−1(F, t) = I (F, t), exists and its

derivative is ∂ I
∂F (·, t) =

(
∂F
∂ I (·, t)

)−1, for each 0≤ t ≤ T . Using the transformation

C(I , t) = C(F, t)

we obtain (by the chain rule)

∂C

∂F
=

∂C
∂ I

∂ I

∂F
=

∂C
∂ I

(∂F

∂ I

)−1
,

∂2C

∂F2
=

∂2C
∂ I 2

(∂F

∂ I

)−2
−

∂C
∂ I

(∂F

∂ I

)−2∂2F

∂ I 2
.

With the transformatioñt = τ − t (and immediately dropping the tilde) (9), (10)
becomes

∂C
∂t

−
1

2
σ 2I 2∂2C

∂ I 2
+

1

2
σ 2I 2∂2F

∂ I 2

∂C
∂ I

= 0, I > 0, 0 ≤ t ≤ τ (12)

C(I , 0) = max(I − K , 0), I > 0. (13)

Note that (12) involves the second derivative ofF with respect toI (whereF is given

by (11)). The complex structure of∂2F
∂ I 2 (not given here) does not allow to find an ex-

plicit solution of (12), (13). Therefore we need to solve the problem numerically. We
use a standard explicit finite difference scheme (forward Euler). For the computation
we replaceR+ by [0, R] with R > 0. For simplicity, we consider a uniform grid
Z = {I i ∈ [0, R] : I i = ih, i = 0, ..., N} consisting ofN + 1 grid points, with
R = Nh and with space steph and time stepk. Let Cn

i denote the approximate
solution of (12) inI i at timetn = nk and setCn

= (Cn
i )N

i =0. Dirichlet conditions are
used on both boundary points:

Cn
0 = 0, Cn

N = Nh − K .

We choose the following parameters:

T = τ = 0.1, t = 0, K = 1, σ = 0.2, N = 400, h = 0.01, R = 4.0, β = 5.

The choice of the underlying asset return’s annual volatility of 20% is consistent with
the 18% p.a. on the S&P 500. The solution of the original problemC(F, t) is shown
in Figure 4 for different values ofδ. The option prices increase for smaller values
of δ. Note that forδ = −1, i.e. the ASPK has constant elasticity, the option price
is lower than for declining elasticity. This is consistent with Theorem 1 in Franke,
Stapleton and Subrahmanyam (1999) who show that option prices are ceteris paribus
higher under declining elasticity of the ASPK than under constant elasticity of the
ASPK.
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Figure 4. Option prices under different ASPKs. The figure shows the option priceC as a function of the
underlying forward priceF for four different ASPKs. We use the two-term ASPK (4) withβ = 5 and
δ = −1, −3, −5, or − 10. Time to maturity isτ = 0.1, the instantaneous volatility isσ = 0.2, and
the strike price isK = 1. The option prices are computed by numerical solution of PDE (12),(13). Note
that the ASPK has constant elasticity forδ = −1 and that the option prices are ceteris paribus higher for
smaller values ofδ.

2.3. The log-gamma case

The pricing of European options on a log-gamma distributed underlying is analogous
to the pricing of options on lognormally distributed underlyings. While in the last
chapter we assumedIT to be lognormally distributed we assume now thatIT has a
log-gamma distribution (Heston, 1993, p.937), i.e.

ln IT = µ + σz, g(z, θ) =

{
zθ−1 exp(−z)

0(θ) , for 0 ≤ z < ∞,

0, for z < 0,

wherez has the gamma densityg(z, θ) with degrees of freedomθ. The cumulative
distribution function is given by

G(z; θ) =

z∫
0

g(z, θ) dz.

The log-gamma case is especially interesting for options on stocks and stock indices
since the gamma distribution is flexible enough to capture the kurtosis and skewness
of stock returns. Let us consider the corresponding information process. SinceI t is
an information process,I t = E( IT |Ft ) and thereforeI t = exp(µ)(1 − σ)−θ with
µ = ln I t + θ ln(1 − σ). The degrees of freedomθ of the distribution depend on the
time to maturity(T − t). This can be easily seen if we consider the corresponding
information processI t which is given by

ln I t = ln I0 + θxt ln(1 − σ) + σ xt , 0 ≤ t ≤ T,

wherext is a slight generalization of the gamma process defined in Heston (1993,
p.941). The processxt has the property thatx0 = 0 a.s. and for 0≤ s < t, the
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incrementxt − xs is independent ofFs and has a gamma distribution with degrees
of freedomθx(t − s). Hence the information process can also be written as

ln I t = ln Is + θx(t − s) ln(1 − σ) + σ(xt − xs), 0 ≤ s < t,

which implies that the degrees of freedom of the distribution ofIT conditional on
the informationFt is given byθx(T − t). Heston (1993) argues that the degrees of
freedom for monthly stock returns should be at least 6. Since we measure time in
years, this impliesθx = 72.

Similarly to the derivation of option prices on lognormally distributed underly-
ings we can decompose our option pricing equation in terms which correspond to a
world where the ASPK has constant elasticityδi . Heston (1993) derives an analytical
option pricing formula for constant elasticity of the ASPK, hence the option price
under our generalized ASPK is given by a weighted sum of Heston (1993) prices:

Ct = E

(
max(IT − K , 0)

∑N
i =1 αi I δi

T

E
(∑N

i =1 αi I δi
T

∣∣∣Ft

)∣∣∣∣Ft

)

= E

( N∑
i =1

max(IT − K , 0)αi I δi
T

E
(∑N

i =1 αi I δi
T

∣∣∣Ft

) ∣∣∣∣Ft

)

=

N∑
i =1

E
(
αi I δi

T

∣∣Ft
)

E
(∑N

i =1 αi I δi
T

∣∣∣Ft

)E

(
max(IT − K , 0)αi I δi

T

E
(
αi I δi

T

∣∣Ft
) ∣∣∣∣Ft

)
=

N∑
i =1

$i Hestoni ,

where
Hestoni = F (i )

t (1 − G(h1; θ)) − K (1 − G(h2; θ)) ,

for σ positive and

Hestoni = F (i )
t G(h1; θ) − K G(h2; θ),

for σ negative11 with

h1 = (ln K − µ)

(
exp(−µ)F (i )

t
)−1/θ

1 −
(
exp(−µ)F (i )

t
)−1/θ

, h2 = h1 + ln K − µ,

are the corresponding Heston (1993, p.939) option prices and$i are the weights.12

F (i )
t is again the virtual asset price, defined as

F (i )
t = E

(
IT

I δi
T

E(I δi
T |Ft )

∣∣∣Ft

)
= eµ (1 − (δi + 1)σ )−θ

(1 − δi σ)−θ
= I t

(1 − (δi + 1)σ )−θ

(1 − σ)−θ (1 − δi σ)−θ
.

Note that the generalized Heston option pricing equations have the same advantages
as the generalized Black-Scholes pricing equations but they are more flexible with
respect to the underlying distribution.
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2.4. The case of a uniform distribution

If the underlying has a uniform distribution, then the density function ofIT is given
by f (IT ) =

1
b−a for IT ∈ [a, b] and f (IT ) = 0 for IT /∈ [a, b]. Let us consider only

the interesting case wherea < K < b. Straightforward calculation shows that then
the price of a European option for 0≤ t ≤ T is given by13

Ct = E

(
max(IT − K , 0)

∑N
i =1 αi I δi

T

E
(∑N

i =1 αi I δi
T

∣∣∣Ft

)∣∣∣∣Ft

)

=

b∫
K

(
(IT − K )

∑N
i =1 αi I δi

T

E
(∑N

i =1 αi I δi
T

∣∣∣Ft

))
1

b − a
d IT

=

[∑N
i =1

αi
δi +2 I δi +2

T

]b

K
− K

[∑N
i =1

αi
δi +1 I δi +1

T

]b

K[∑N
i =1

αi
δi +1 I δi +1

T

]b

a

,

whenδi /∈ {−1, −2}; otherwise, similar equations hold in which ln(IT ) appears as
the antiderivative of 1/IT . This provides us with a simple option pricing equation for
rather general shapes of the ASPK and a uniformly distributed underlying.14 A more
widely used assumption is that the underlying is normally distributed. We analyze
this case in the following section.

2.5. The case of a normal distribution

If the underlying is normally distributed and the ASPK is an exponential function,
option prices are given by the Brennan (1979) formula. Brennan derives option prices
under the assumption that the elasticity of the ASPK with respect to the underlying
asset is proportional to the value of the underlying asset. Analogously to the previous
sections we will price options by decomposing their value into option prices which
would hold in the simple case. The following generalization of the Brennan (1979)
formula is based on our previous result that a weighted sum of exponential functions
is a special case of our generalized polynomial. Assuming that the ASPK can be
characterized

φ̂t,T =

∑N
i =1 α̂i exp(̂δi IT )

E
(∑N

i =1 α̂i exp(̂δi IT )
∣∣∣Ft

) , 0 ≤ t ≤ T,

and IT is now normally distributed we get

Ct = E
(
max(IT − K , 0)φ̂t,T

∣∣Ft
)

=

N∑
i =1

E
(̂
αi exp(̂δi IT )

∣∣Ft
)

E
(∑N

i =1 α̂i exp(̂δi IT )
∣∣Ft

)E

(
α̂i exp(̂δi IT )

E
(̂
αi exp(̂δi IT )

∣∣Ft
) max(IT − K , 0)

∣∣∣∣Ft

)

=

N∑
i =1

κ̂i Brennani , 0 ≤ t ≤ T,
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where

Brennani =
(
F (i )

t − K
)
N

(
F (i )

t − K

σ
√

T − t

)
+ σ

√
T − t n

(
K − F (i )

t

σ
√

T − t

)
are the corresponding Brennan (1979) option prices andκ̂i are the weights.N(·) is
again the cumulative standard normal density function andn(·) denotes the standard
normal density function.F (i )

t is the virtual asset price with

F (i )
t = E

(
IT α̂i exp(̂δi IT )

E
(̂
αi exp(̂δi IT )

∣∣Ft
) ∣∣∣∣Ft

)
= I t + δ̂i σ

2(T − t), 0 ≤ t ≤ T.

The information process would then be given by a Brownian motion with constant
volatility σ and no drift, i.e.,

d It = σ dWt , 0 ≤ t ≤ T,

I0 > 0.

In this case, the terminal valueIT is normally distributed with

E(IT |Ft ) = I t and Var(IT |Ft ) = σ 2(T − t), 0 ≤ t ≤ T.

Hence, this ASPK specification generates analytical option pricing formulas for
normally distributed underlyings although the ASPK is not an exponential function
and hence the elasticity is not linear in the underlying asset.

Our previous derivations show that the option pricing approach proposed in this
paper would be consistent with many alternative distributional assumptions. For ex-
ample Cox, Ross and Rubinstein’s (1979) binomial formula and Heston’s (1993)
option pricing formula, based on the negative binomial density, as well as several
other option pricing formulas are consistent with a power function as ASPK, hence
they can be easily extended to the case where the ASPK is given by (1).

2.6. Implied Volatilities

To compute the implied volatilities of the option prices we use the following iteration
procedure. LetC be the option price computed by one of the formulas of section 2
and letσ (0) be a given starting value. Then,

− For a given volatilityσ (n) compute the Black-Scholes option priceC(σ (n)),

− Computeσ (n+1)
= σ (n)

−
C(σ (n))−C

C′(σ (n))
,

− Setn := n + 1, repeat cycle.

Let σ
(n)
i denote thenth iterate of the implied volatility at grid pointI i . We stop the

iteration procedure when thel2 norm of the update defined by

ε2 =

(
h

N∑
i =0

∣∣∣∣σ (n+1)
i − σ

(n)
i

∣∣∣∣2)
1
2
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becomes less than 10−5.

2.6.1. Different distributions with maturity τ = T
Using the following parameters

T = 0.2, t = 0, σ = 0.2, β = 5, δ = −10,

we compute the implied volatilities in the following settings

− ASPK (4) with lognormal distribution ofIT ,

− ASPK (4) with log-gamma distribution ofIT ,

− ASPK (4) with normal distribution ofIT ,

− Empirical ASPK (Figure 1) with lognormal distribution ofIT .

For the log-gamma case we set the additional parameterθx = 72. The results are
shown in Figure 5. ForIT lognormally distributed and an ASPK with declining
elasticity, ASPK (4), we observe (see top left of Figure 5) a significant volatility
skew. That is the implied volatility for in-the-money calls (i.e. out-of-the-money
puts) is significantly higher than the implied volatility of at-the-money calls and
out-of-the-money calls. This effect is similar to the case where we use a lognormal
distribution and the fitted empirical ASPK, however, with the empirical ASPK the
volatility skew is more pronounced (see bottom right of Figure 5). For a normally
distributed underlying and ASPK (4) we find an inversed volatility skew, that is
out-of-the-money calls have the highest implied volatility (see bottom left of Figure
5). The same holds for the log-gamma case (see top right of Figure 5). Why is the
implied volatility skew inversed in these two cases? This is easily illustrated for the
log-gamma distribution. Note that for Figure 5 and 6 we used a positive sigma and
this implies for the log-gamma distribution that asset returns are positively skewed.
Positive skewness of returns enhances the probability of extreme positive returns
which consequently increases the value of out-of-the-money calls compared to the
Black-Scholes case. While declining elasticity of the ASPK compared to constant
elasticity of the ASPK increases the value of in-the-money calls (i.e. out-of-the-
money puts) positive skewness tends to increase the value of out-of-the-money calls
(i.e. in-the-money puts).

Figure 6 illustrates this effect of higher moments on option prices. There we
consider the case thatIT is log-gamma distributed with different values ofθx. We
setT = 0.1, t = 0, σ = 0.2 and compute the implied volatilities related to two
different ASPKs, the ASPK with constant elasticityδ = −1 and ASPK (4) withβ =

5, δ = −10. The implied volatilities are shown in Figure 6. The log-gamma prices
are computed using the formula in section 2.3. Therein, the parameterµ is chosen in
a way as to approximate the Black-Scholes pricing of at-the-money options, namely
µ = ln(F (i )

t ) − σ
√

θ with degrees of freedomθ = θx(T − t).
Hence, the implied volatility for the ASPK with constant elasticity (δ = −1) is

approximately equal toσ = 0.2 at-the-money. The implied volatility has a negative
slope. This is consistent with the fact, that Heston’s formula (for positiveσ ) assigns
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Figure 5. Implied volatilities under different ASPKs and different distributions. The figure shows the
implied volatilities for four different settings. The graphs top left, top right and bottom left are all based on
the two-term ASPK (4) withδ = −10 andβ = 5. For the graph bottom right we use the five-term ASPK
fitted to the empirical ASPK. The underlying is lognormally distributed for the figures top left and bottom
right. For the figure top right we use a log-gamma distribution with the additional parameterθx = 72.
For the figure on the bottom left we use a normal distribution. The time to maturity isτ = T = 0.2 and
σ = 0.2 for all four settings.

higher prices to out-of-the-money call options and lower prices to in-the-money call
options, compared to the Black-Scholes formula. Asθx grows large, the gamma
distribution approaches the normal distribution and the implied volatility approaches
the Black-Scholes value for all values ofI /K .

In Figure 7 we plot the implied volatility for the log-gamma distribution and
a negative sigma. Hence, in this case asset returns are negatively skewed which is
consistent with empirical findings for stock prices, especially major stock indices.
We see that with negatively skewed asset returns the implied volatility is higher for
in-the money calls (i.e. out-of-the-money puts) than for at-the-money calls (i.e. at-
the-money puts) and out-of-the money calls (i.e. in-the-money puts). Since negative
skewness and declining elasticity of the ASPK work in the same direction we ob-
serve a steeper volatility skew for declining elasticity of the ASPK than for constant
elasticity of the ASPK.

2.6.2. Lognormality for maturities τ < T
For a lognormally distributed underlying we turn to the case of options expiring
at timesτ with τ < T . Applying the same method as in the previous section we
compute the implied volatilities of the option price given by the numerical solution
of (12), (13) for different maturitiesτ . During the iteration procedure we need to
compute the Black-Scholes price of the option with respect to the forward price
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Figure 6. Implied volatilities under different ASPKs and log-gamma distributed underlyings with positive
σ . The figure shows the implied volatilities for two different ASPKs. For the left graph, the ASPK has
constant elasticity, i.e. ASPK (4) withδ = −1 andβ = 5. The ASPK in the right graph has declining
elasticity, i.e. ASPK (4) withδ = −10 andβ = 5. For both graphs we use a log-gamma distributed
underlying withθx = 20 (solid line),θx = 72 (dashed line) orθx = 280 (dotted line).σ is positive and
equal to 0.2 and time to maturity isT = 0.1.

F on an equidistant grid. Since the numerical solution of (12), (13) is a function
of I , we use an interpolation with piecewise polynomials (cubic spline) to obtain
Black-Scholes prices at the grid points ofZ. We choose the following parameters:

T = 0.1, t = 0, σ = 0.2, N = 400, R = 4.0, β = 5, δ = −10.

Figure 8 shows the implied volatility. The minimal value isσim(0.99, 0.05) = 0.1469.
The implied volatility increases with growing maturityτ . Note also that the implied
volatility is not symmetric. It is steeper in-the-money than out-of-the-money. These
characteristics of the implied volatility are consistent with the empirically observed
patterns of implied volatilities of S&P 500 options15.

3. Conclusion

In this paper we derive analytical option pricing formulas for very flexible shapes of
the ASPK and many different distributions of the underlying asset. These option pric-
ing equations are based on a generalized polynomial characterization of the ASPK.
Technically speaking the polynomial characterization has the main advantage of be-
ing very flexible and allowing for analytical option pricing formulas. Furthermore it
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Figure 7. Implied volatilities under different ASPKs and log-gamma distributed underlyings with nega-
tive σ . The figure shows the implied volatilities for two different ASPKs. For the left graph, the ASPK
has constant elasticity, i.e. ASPK (4) withδ = −1 andβ = 5. The ASPK in the right graph has declining
elasticity, i.e. ASPK (4) withδ = −10 andβ = 5. For both graphs we use a log-gamma distributed
underlying withθx = 20 (solid line),θx = 72 (dashed line) orθx = 280 (dotted line).σ is negative and
equal to - 0.2 and time to maturity isT = 0.1.

allows for reasonable approximations of empirical ASPKs with a small number of
parameters.

Our approach to derive analytical option pricing formulas is widely applicable.
First, in option pricing the derived analytical option pricing equations are more flex-
ible than existing analytical option pricing formulas and should therefore prove to
have an enhanced pricing accuracy compared to alternative analytical option pricing
equations.

Since the option pricing formulas depend on the expected value of the under-
lying asset and no price of the underlying asset is needed, our approach is also an
interesting model for options on non-traded underlyings where a market value of the
underlying is not available.

Due to the flexibility of the polynomial characterization of the ASPK our ap-
proach will help to evaluate the quantitative implications of non-constant elasticity
of the ASPK on option prices. Given our option pricing formulas it is straightforward
to analyze the quantitative impact of alternative assumptions on the underlying asset
and the ASPK on option prices. Up to now, only qualitative results on these relations
were known, see e.g. Franke, Stapleton and Subrahmanyam (1999).

The numerical properties of the polynomial characterization of the ASPK point
out that our new approach may also be used to infer empirical ASPK from op-
tion prices. It somewhat combines the advantages of existing parametric approaches
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Figure 8. Implied volatilities for different maturitiesτ ≤ T . The figure shows the implied volatilities
under the two-term ASPK (4) for different maturities 0.05 ≤ τ ≤ 0.1. The instantaneous volatility of the
information process isσ = 0.2, current time ist = 0, and the terminal dateT = 0.1. The ASPK has
declining elasticity withβ = 5 andδ = −10. The option prices are computed by numerical solution of
PDE (12), (13). Note that the implied volatility is skewed and increases with growing maturityτ .

with the greater flexibility of nonparametric approaches. It therefore seems to be a
promising approach for future empirical analysis of ASPKs. We leave the empirical
implementation for future research.

Appendix A. Proof of Lemma 1

We obtain from (11)

∂F

∂ I
=

eσ2(t−T)(1 + β(δ + 2)I δ+1e
1
2 (δ2

+δ)σ2(T−t))

1 + β I δ+1e
1
2 (δ2−δ−2)σ2(T−t)

−
eσ2(t−T)(1 + β I δ+1e

1
2 (δ2

+δ)σ2(T−t))β(δ + 1)I δ+1e( 1
2 (δ2

−δ−2)σ2(T−t))

(1 + β I (δ+1)e
1
2 (δ2−δ−2)σ2(T−t))2

=

[(
1 + β(δ + 2)I δ+1e

1
2σ2(δ2

+δ)(T−t)
+ β2I 2δ+2eσ2(δ2

−1)(T−t)

− βδ I δ+1e
1
2σ2(δ2

−δ−2)(T−t))eσ2(t−T)
][

1 + β I δ+1e
1
2 (δ2

−δ−2)σ2(T−t)
]−2

.

The denominator is positive, therefore we only have to consider the numerator,

N :=1 + 2β I δ+1e
1
2σ2(δ2

+δ)(T−t)
+ β2I 2δ+2eσ2(δ2

−1)(T−t)

+ βδ I δ+1(e1
2σ2(δ2

+δ)(T−t)
− e

1
2σ2(δ2

−δ−2)(T−t))).
The first three terms are non-negative or positive, respectively. Since(δ2

+δ)−(δ2
−

δ − 2) = 2δ + 2 ≤ 0, we havee−
1
2δσ2(δ+1)(t−T)

− e−
1
2σ2(δ+1)(δ−2)(t−T)

≤ 0 and the
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fourth term is non-negative, too. Furthermore

∂F

∂t
=

I σ 2eσ2(t−T)[(1 + β I δ+1e(δ2
+δ) σ2

2 (T−t))−(1
2β I δ+1(δ2

+ δ)e(δ2
+δ) σ2

2 (T−t))]

1 + β I δ+1e(δ2−δ−2) σ2
2 (T−t)

+
I σ 2eσ2(t−T)(1 + β I δ+1e(δ2

+δ) σ2
2 (T−t))β I δ+1(δ2

− δ − 2)e(δ2
−δ−2) σ2

2 (T−t)

2(1 + β I δ+1e(δ2−δ−2) σ2
2 (T−t))2

.

A computation similar as above shows that∂F
∂t > 0.

Notes

1 The asset specific pricing kernel is the pricing kernel conditioned on the payoffs of an asset. For a
detailed discussion of the pricing kernel and the asset specific pricing kernel we refer the reader to the
excellent textbook of Cochrane (2001) as well as to the articles of Câmara (2001) and Ĉamara (2003).

2 This is, for example, analyzed in depth by Câmara (2003).
3 Closely related are also articles that analyze heterogeneous expectations and the consequences for

option pricing, see for example Huang (2003) and Ziegler (2002).
4 Alternatively asset prices could be interpreted as forward prices.
5 Here and in the followingE denotes the expected value with respect to the subjective measureP.
6 Assuming such an exogenous information process to model the information in the economy is com-

mon. The main advantage of this approach is that it is a parsimonious and intuitive way to characterize
the filtration, see Franke, Stapleton and Subrahmanyam (1999).

7 See L̈uders and Franke (2004).
8 The data on empirical elasticities of ASPKs were kindly provided by Jens Jackwerth. These empirical

ASPKs are published in Jackwerth (2000).
9 The specific result also depends on the conditions that are imposed on the behavior for levels of

moneyness, where no empirical data is available.
10 This follows from the Theorem of Feynman-Kac (see, e.g. Karatzas and Shreve, 1991). In order to

apply the Theorem of Feynman-Kac the expected value has to exist. Since the underlying asset is basically
a weighted sum of lognormally distributed assets this requirement holds.

11 This formula corrects a typing error in formula (10b) in Heston (1993).
12 It follows from the assumptions on the information process that the degrees of freedomθ are given

by θ = θx(T − t).
13 See also Haugen (2001) for a presentation of option prices for uniformly distributed underlyings

under the assumption of risk-neutrality.
14 Note also that for the assumed uniform distribution forIT , E(I

δi
T |Ft ) can be rewritten as∑δi

k=0

(δi
k

) ak(a−b)δi −k

1+δi −k .

15 See Rubinstein (1994), Jackwerth and Rubinstein (1996), Ait-Sahalia and Lo (1998) and Carr and
Wu (2003).
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